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Abstract 

In this paper, we introduce the vertex-to-edge u−e path, the vertexto-edge 

detour distance D(u,e), the vertex-to-edge u−e detour, the vertex-to-edge 

detour eccentricity eD1(u), the vertex-to-edge detour radius R1, and the 

vertex-to-edge detour diameter D1 of a connected graph G, where u is a 

vertex and e an edge in G. We determine these parameters for some 

standard graphs. It is shown that R1 ≤D1 ≤ 2R1+1 for every connected graph 

G and that every two positive integers a and b with a ≤ b ≤ 2a+1 are 

realizable as the vertex-to-edge detour radius and the vertex-to-edge detour 

diameter, respectively, of some connected graph. Also it is shown that for 

any two positive integers a, b with a ≤ b are realizable as the vertex-to-edge 

radius and the vertex-to-edge detour radius, respectively, of some connected 

graph and also it is shown that for any two positive integers a, b with a ≤ b 

are realizable as the vertex-to-edge diameter and the vertex-to-edge detour 

diameter, respectively, of some connected graph. Also we introduce the 

vertex-to-edge detour center C1(G) and the vertex to-edge detour periphery 

P1(G). It is shown that the vertex-to-edge detour center of every connected 

graph lies in a single block. Also it is shown that every graph is the vertex-

to-edge detour center of some connected graph. 

Key words: vertex-to-edge detour distance, vertex-to-edge detour radius, 

vertex-to-edge detour diameter. 
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1 Introduction 

By a graph G = (V,E) we mean a finite undirected connected simple graph. 

For basic graph theoretic terminologies, we refer to Chartrand and Zhang 

[4]. For example if one is locating an emergency facility like police station, 

fire station, hospital, school, college, library, ambulance depot, emergency 

care center, etc., then the primary aim is to minimize the distance between 

the facility and the location of a possible emergency. In 1964, Hakimi [6] 

considered the facility location problems as vertex-to-vertex distance in 

graphs. For any two vertices u and v in a connected graph G, the distance 

d(u, v) is the length of a shortest u − v path in G. For a vertex v in G, the 

eccentricity e(v) of v is the distance between v and a vertex farthest from v in 

G. The minimum eccentricity among the vertices of G is its radius and the 

maximum eccentricity is its diameter, denoted by rad(G) and diam(G) 

respectively. A vertex v in G is a central vertex if e(v) = rad(G) and the 

subgraph induced by the central vertices of G is the center Cen(G) of G. A 

vertex v in G is a peripheral vertex if e(v) = diam(G) and the subgraph 

induced by the peripheral vertices of G is the periphery Per(G) of G. If every 

vertex of G is a central vertex then G is called self-centered graph. 

For example if one is making an election canvass or circular bus 

service the distance from the location is to be maximized. In 2005, Chartrand 

et.al. [3] introduced and studied the concepts of detour distance in graphs. 

For any two vertices u and v in a connected graph G, the detour distance 

D(u, v) is the length of a longest u − v path in G. For a vertex v in G, the 

detour eccentricity eD(v) of v is the detour distance between v and a vertex 

farthest from v in G. The minimum detour eccentricity among the vertices of 

G is its detour radius and the maximum detour eccentricity is its detour 

diameter, denoted by radD(G) and diamD(G) respectively. Detour center, 

detour self-centered and detour periphery of a graph are defined similar to 

the center, self-centered and periphery respectively of a graph, respectively. 
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For example when a railway line, pipe line or highway is 

constructed, the distance between the respective structure and each of the 

communities to be served is to be minimized. In a social network an edge 

represents two individuals having a common interest. Thus the centrality 

with respect to edges have intresting application in social networks. In 2010, 

Santhakumaran [9] introduced the facility locational problem as vertex-to-

edge distance in graphs as follows: For a vertex u and an edge e in a 

connected graph G, the vertex-to-edge distance is defined by d(u,e) = 

min{d(u,v) : v  e}. The vertex-to-edge eccentricity of u is defined by e1(u) = 

max{d(u,e) :e  E}. An edge e of G such that e1(u) = d(u, e) is called a vertex-

to-edge eccentric edge of u. The vertex-to-edge radius r1 of G is defined by r1 

= min{e1(v) : v  V} and the vertex-to-edge diameter d1 of G is defined by d1 

= max{e1(v) : v  V}. A vertex v for which e1(v) is minimum is called a 

vertex-to-edge central vertex of G and the set of all vertex-to-edge central 

vertices of G is the vertex-to-edge center C1(G) of G. A vertex v for which 

e1(v) is maximum is called a vertex-to-edge peripheral vertex of G and the 

set of all vertex-to-edge peripheral vertices of G is the vertex-to-edge 

periphery C1(G) of G. If every vertex of G is a vertex-to-edge central vertex 

then G is called vertex-to-edge self-centered graph. 

These motivated us to introduce a distance called the vertex-to-edge 

deotur distance in graphs and investigate certain results related to vertex-to-

edge detour distance and other distances in graphs. For example when a 

dam, river and channel is constructed, the distance between the respective 

structure and each of the communities to be served is to be maximized. 

Further these ideas have intresting applications in channel assignment 

problem in radio technologies. Also there are useful applications of these 

concepts to security based communication network design. Throughout this 

paper, G denotes a connected graph with at least two vertices. 
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2 Vertex-To-Edge Detour Distance 

 

Definition 2.1. Let u be a vertex and e an edge in a connected graph G. A vertex-

to-edge u−e path P is a u−v path, where v is a vertex in e such that P contains no 

vertices of e other than v. The vertex-to-edge detour distance D(u,e) is the length of 

a longest u−e path. A u−e path of length D(u,e) is called a vertex-to-edge u−e 

detour or simply u−e detour. For our convenience a u−e path of length d(u,e) is 

called a vertex-to-edge u−e geodesic or simply u−e geodesic. 

Example 2.2. Consider the graph G given in Fig 2.1. For the vertex u and the edge 

e = {v,w}, the paths P1 : u,w, P2 : u, z, r, v and P3 :u, t, s, x, y, z, r, v are u − e 

paths, while the paths Q1 : u,w, v and Q2 : u, z, r, v,w are not u − e paths. Now the 

vertex-to-edge distance d(u, e) = 1 and the vertex-to-edge detour distance D(u, e) = 

7. Thus the vertex-to-edge detour distance is different from the vertex-to-edge 

distance. Also P3 is a u−e detour and P1 is a u−e geodesic. Note that the v−e and 

w−e paths are trivial. 

 

Fig. 2.1: G 

        Since the length of a u − e path between a vertex u and an edge e in a 

graph G of order n is at most n − 2, we have the following theorem. 

Theorem 2.3. For any vertex u and an edge e in a non-trivial connected graph G of 

order n, 0 ≤ d(u, e) ≤ D(u, e) ≤ n − 2. 
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Remark 2.4. The bounds in the Theorem 2.3 are sharp. For every vertex u in G, 

d(u, e) = D(u, e) = 0 if and only if u  e and if G is a path P : u = u1, u2, . . . , un−1, 

un of order n, then d(u, e) = D(u, e) = n−2, where e = {un−1, un}. Also we note that 

if G is a tree, then d(u, e) = D(u, e) and if G is an even cycle with u  e, then d(u, 

e) < D(u, e) for every vertex u in G.  

Since a vertex of degree n − 1 in a graph G of order n, belongs to 

every edge e in G, we have the following theorem. 

Theorem 2.5. Let G be a connected graph of order n and e an edge in G. If u is a 

vertex of degree n − 1, then D(u, e) = 0. 

The converse of the Theorem 2.5 is not true. For the graph G given in 

Fig. 2.1, D(u, e) = 0, where e = {u, z}, but deg(u)  n − 1. 

Theorem 2.6. Let Kn,m (n < m) be a complete bipartite graph with the partition V1, 

V2 of V (Kn,m) such that |V1| = n and |V2| = m. Let u be a vertex and e an edge 

such that u  e in Kn,m, then D(u,C) =  

Proof. Let V1 = {x1, x2, . . . , xn} and V2 = {y1, y2, . . . , yn, yn+1, . . . , ym}. Without 

loss of generality assume that e = {xn, yn} is an edge and u = x1 or u = y1. 

Case 1. u = x1. Let P1 : u = x1, y1, x2, y2, . . . , xn−1, yn−1, xn be a longest u − e 

path, which has n vertices of V1 and n − 1 vertices of V2. It must contain 2n − 

1 vertices of Kn,m. So that its length is 2n − 2. Also P2 : u = x1, y1, x2, y2, . . . , 

xn−1, yn be a longest u−e path, which has n−1 vertices of V1 and n−1 vertices 

of V2. It must contain 2n − 2 vertices of Kn,m. So that its length is 2n − 3. Thus 

D(u,e) = 2n − 2 if u  V1. 

Case 2. u = y1. Let Q1 : u = y1, x1, y2, x2, . . . , yn−1, xn−1, yn+1, xn be a longest u − 

e path, which has n vertices of V1 and n vertices of V2. It must contain 2n 

vertices of Kn,m. So that its length is 2n − 1. Also Q2 : u = y1, x1, y2, x2, . . . , 

yn−1, xn−1, yn be a longest u−e path, which has n−1 vertices of V1 and n 

vertices of V2. It must contain 2n − 1 vertices of Kn,m. So that its length is 2n − 

2. Thus D(u, e) = 2n − 1 if u  V2. 
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Corollary 2.7. Let u be a vertex and e an edge in a complete bipartite graph Kn,n 

such that u e, then D(u, e) = 2n − 2. 

Since every tree has unique u − e path between a vertex u and an 

edge e, we have the following theorem. 

Theorem 2.8. If G is a tree, then d(u, e) = D(u, e) for every vertex u and an edge e 

in G. 

The converse of the Theorem 2.8 is not true. For every vertex u in K3 

with u e, d(u, e) = D(u, e) = 1 and for every vertex u in K3 with u  e,d(u, e) 

= D(u, e) = 0. 

Definition 2.9. For a vertex u and an edge e in a connected graph G, au − e path P 

is said to be u − e hamiltonian path if  P ∪  {e} contains every vertex of G. 

Theorem 2.10. For a vertex u and an edge e in a connected graph G of order n ≥ 2, 

there exists an integer k such that D(u,e)=k if and only if G is hamiltonian-

connected and k= n−2. 

Proof. If G is a hamiltonian-connected graph of order n ≥ 2, then there exists a 

u−e hamiltonian path between a vertex u and an edge e in G and so D(u, e) = 

n−2. Conversely, assume to the contrary, that there exists a connected graph 

G of order n ≥ 2 such that D(u, e) = k for a vertex u and an edge e in G, but k 

< n − 2. Let uv, xv  E. Since D(u, e) = k, there exists a u−e detour P of length 

k in G. Then P ∪ {xv}∪ {uv}, forms a cycle Ck+2 of length k+2 in G. Since n > k 

+ 2 and G is connected, there exists a vertex y V (G) − V (Ck+2) such that y 

is adjacent to some vertex z in Ck+2. Assume that Ck+2 : z = v1,v2, . . . , vk+2,v1= 

z. However then y, z = v1,v2, . . . , vk+1, vk+2 is an y − e′ path of length k + 2, 

where e′ = {vk+1, vk+2} and so D(u, e′) ≥ k + 2, which is a contradiction. 

 

3 Vertex-To-Edge Detour Center 

 

Definition 3.1. The vertex-to-edge detour eccentricity eD1(u) of a vertex u in a 

connected graph G is defined as eD1(u) = max {D(u, e) : e E}. An edge e for 
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which eD1(u) = D(u, e) is called a vertex-to-edge detour eccentric edge of u. The 

vertex-to-edge detour radius of G is defined as, R1 = radD1(G) = min {eD1(v) : v 

V} and the vertex-to-edge detour diameter of G is defined as, D1 = diamD1(G) = 

max {eD1(v) : v  V}. A vertex v in G is called a vertex-to-edge detour central 

vertex if eD1(v) = R1 and the vertex-to-edge detour center of G is defined as, CD1(G) 

= CenD1(G) = {v  V : eD1(v) = R1} . A vertex v in G is called a vertex-to-edge 

detour peripheralvertex if eD1(v) = D1 and the vertex-to-edge detour periphery of G 

is defined as, PD1(G) = PerD1(G) = {v  V : eD1(v) = D1} . If every vertex of G is a 

vertex-to-edge detour central vertex, then G is called a vertex-to-edge detour self 

centered graph. If G is a vertex-to-edge detour self-centered graph, then G is its own 

vertex-to-edge detour periphery.  

Example 3.2. For the graph G given in Fig. 3.1, the set of all edges in G are given 

by, E ={e1={v1,v2}, e2={v1,v3}, e3={v2,v3}, e4={v3,v3}, e5 ={v4,v5}, e6 ={v5,v6}, e7 

={v6,v7}, e8 ={v4,v7}, e9 ={v7,v8}, e10 ={v8,v10}, e11 ={v4,v10}, e12 ={v4,v9}, e13 

={v9,v10}, e14 ={v10, v14}, e15 ={v13,v14}, e16 ={v12,v13}, e17 ={v11,v12}, e18 ={v10,v11}, 

e19 ={v11, v14}, e20 = {v10, v11}, e21 = {v10, v13}, e22 = {v10, v12}, e23 = {v12, v14}}. 

 

Fig. 3.1: G 
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The vertex-to-edge eccentricity e1(v), the vertex-to-edge detour eccentricity 

eD1(v) of all the vertices of G are given in Table 1. 

Table 1 

The vertex-to-edge detour eccentric edge of all the vertices of G are given in 

Table 2. 

 

Table 2 

The vertex-to-edge radius r1 = 2, the vertex-to-edge diameter d1 = 4, the vertex-to-

edge detour radius R1 = 7 and the vertex-to-edge detour diameter D1 = 11. Also the 

vertex-to-edge center C1(G) = {v4} , the vertex-to-edge periphery P1(G) = {v1, v2, 

v6, v11, v12, v13, v14} , the vertex-to-edge detour center CD1(G) = {v10}  and the 

vertex-to-edge detour periphery PD1(G) = {v1, v2, v11, v12, v13, v14} . 

The vertex-to-edge detour radius R1 and the vertex-to-edge detour 

diameter D1 of some standard graphs are given in Table 3. 

 

Table 3 

Remark 3.3. In a connected graph G, C1(G), CD1(G) and P1(G), PD1(G) need not be 

same. For the the graph G given in Fig 3.1, C1(G), CD1(G) and P1(G), PD1(G) are 

distinct.  
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Remark 3.4. In a connected graph G, CD1(G) and PD1(G) need not be connected. 

For the graph G given in Fig 3.2, CD1(G) = {v2, v4}  and PD1(G) = {v1, v3, v5}  

are disconnected. 

 

                                                           Fig. 3.2: G 

Example 3.5. The complete graph Kn, the cycle Cn, the wheel Wn and the complete 

bipartite graph Kn,n are vertex-to-edge detour self centered graphs. 

Remark 3.6. A vertex-to-edge self-centered graph need not be a vertex-to-edge 

detour self centered graph. Let Kn,m(n < m) be a complete bipartite graph with the 

partition V1, V2 of V(Kn,m) with |V1| = n and |V2| = m such that C1(G) = 

{V(Kn,m)}  , CD1(G) = {V1(Kn,m)} . 

Theorem 3.7. Let G be a connected graph of order n. Then 

(i) 0 ≤ e1(u) ≤ eD1(u) ≤ n − 2 for every vertex u in G. 

(ii) 0 ≤ r1 ≤ R1 ≤ n − 2. 

(iii) 0 ≤ d1 ≤ D1 ≤ n − 2 . 

Proof. This follows from Theorem 2.3. 

Remark 3.8. The bounds in the Theorem 3.7 (i) are sharp. If G = K2, then e1(u) = 

eD1(u) = 0 = n − 2 for every vertex u in G and and if G is a path P : u1, u2, . . . , 

un−1, un of order n, then e1(u) = eD1(u) = n − 2, where u = u1 or u = un. Also we 

note that if G is a tree, then e1(u) = eD1(u) for every vertex u in G and for the graph 

G given in Fig. 2.1, 0 < e1(u) <eD1(u) < n − 2. 

Theorem 3.9. For every connected graph G, R1 ≤ D1 ≤ 2R1 + 1. 
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Proof. By definition R1 ≤ D1. Now let P : u = u1, u2, . . . , un−1 be a vertex-to-

edge diametral path of length D1 connecting a vertex u and an edge e, where 

e = {un−1, un}, so that D1 = D(u,e) = D(u, un−1) and let x be a vertex of G such 

that eD1(x) = R1 = D(x, e) = D(x, e′), where e′ = {u, u2}. It follows that D1 = D(u, 

e) ≤ D(u, x) + D(x, e) = D(x, e′) + 1 + D(x, e) ≤2R1 + 1. 

Remark 3.10. The bounds in the Theorem 3.9 are sharp. Let K : {u1, u2, u3} and K′ : 
{v1, v2, v3} be to copies of K3. Let G be a graph obtained by identifying u1 in K and 

v1 in K′. It is easy to verify that R1 = 1 and D1 = 3. 

Ostrand [7] Showed that every two positive positive integers a and b 

with a ≤ b ≤ 2a are realizable as the radius and diameter respectively of some 

connected graph and Chartrand et. al. [3] showed that every two positive 

positive integers a and b with a ≤ b ≤ 2a are realizable as the detour radius 

and detour diameter respectively of some connected graph. Now we have a 

realization theorem for the vertex-to-edge detour radius and the vertex-to-

edge detour diameter of some connected graph. 

Theorem 3.11. For each pair a, b of positive integers with a ≤ b ≤ 2a + 1, there 

exists a connected graph G with R1 = a and D1 = b. 

Proof. Case 1. a = b. Let G = Ca+2 : u1, u2, ..., ua+2, u1 be a cycle of order a + 2. 

Then eD1(ui) = a for 1 ≤ i ≤ a + 2. It is easy to verify that every vertex x in G 

with eD1(x) = a. Thus R1 = a and D1 = b as a = b. 

Case 2. 2 ≤ a < b ≤ 2a + 1. Let Ca+2 : u1, u2, . . . , ua+2,u1 be a cycle of order a + 2 

and Pb−a+1 : v1, v2, . . . , vb−a+1 be a path of order b − a + 1. We construct the 

graph G of order b + 2 by identifying the vertex u1 of Ca+2 with v1 of Pb−a+1. It 

is easy to verify that 

eD1(ui) = a for i = 1 

eD1(ui) =  

eD1(vi) = a + i − 1 for 1 ≤ i ≤ b − a + 1 

Inparticular eD1(ui) = eD1(vi) = a for i = 1 
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eD1(ui) = b for i = 2, a + 2 

eD1(vi) = b for i = b − a + 1 

It is easy to verify that there is no vertex x in G with eD1(x) < a and there is 

no vertex y in G with eD1(y) > b. Thus R1 = a and D1 = b as a < b. 

Chartrand et. al. [3] showed that every pair a, b of integers with 1 ≤a 

≤ b is realizable as the radius and the detour radius of some connected 

graph. Now we have a realization theorem for the vertex-to-edge radius and 

the vertex-to-edge detour radius of some connected graph. 

Theorem 3.12. For any two positive integers a, b with a ≤ b, there exists a 

connected graph G such that r1 = a and R1 = b. 

Proof. Let K = Kb−a+2 be the complete graph V (K) = {z1, z2, . . . , zb−a+2}. Let P1 : 

x1, x2, . . . , xa+1 and P2 : y1, y2, . . . , ya+1 be two paths of order a + 1. We 

construct the graph G of order b+ a + 2 by identifying the vertices x1 in P1 

with z1 in K, also identifying the vertices y1 in P2 with zb−a+2 in K. 

It is easy to verify that 

e1(zi) = a for 1 ≤ i ≤ b − a + 2 

eD1(zi) = b for 1 ≤ i ≤ b − a + 2 

e1(xi) = a + i − 1 for 1 ≤ i ≤ a 

eD1(xi) = b + i − 1 for 1 ≤ i ≤ a 

It is easy to verify that there is no vertex x in G with e1(x) < a and eD1(x) < b. 

Thus r1 = a and R1 = b as a ≤ b. 

Chartrand et. al. [3] showed that every pair a, b of integers with 1 ≤ a 

≤b is realizable as the diameter and the detour diameter of some connected 

graph. Now we have a realization theorem for the vertex-to-edge diameter 

and vertex-to-edge detour diameter of some connected graph. 

Theorem 3.13. For any two positive integers a, b with a ≤ b, there exists a 

connected graph G such that d1 = a and D1 = b. 

Proof. Let K = Kb−a+3 be the complete graph V(K) = {v1,v2, . . . ,vb−a+3} and let P 

: u1, u2,...,ua be a path of order a. We construct the graph G of order b + 2 by 

identifying the vertices u1 in P with v1 in K. It is easy to verify that 
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e1(vi) =  

eD1(vi) =  

e1(ui) =  

eD1(ui) =  

It is easy to verify that there is no vertex x in G with e1(x) > a and eD1(x) > b. 

Thus d1 = a and D1 = b as a ≤ b. 

Harary and Norman [5] showed that the center of every connected 

graph G lies in a single block of G and Chartrand et. al. [3] showed that the 

detour center of every connected graph G lies in a single block of G. Also 

Santhakumaran [9] showed that the vertex-to-edge center of every connected 

graph G lies in a single block of G. Now we have the following theorem for 

the vertex-to-edge detour center of a graph. 

Theorem 3.14. The vertex-to-edge detour center of every connected graph G lies in 

a single block of G. 

Proof. Suppose that the vertex-to-edge detour center of a connected graph G 

lies in more than one block. Then G contains a cut vertex v such that G − v 

has two components G1 and G2, each of which contains a vertex-to-edge 

detour central vertices of G. Let C be a vertex-to-edge detour eccentric edge 

of v and let P be a vertex-to-edge longest path in G. At least one of G1 and G2 

contains no vertices of P, say G2 contains no vertex of P. Let w be a vertex-to-

edge detour central vertex in G that belongs to G2 and let Q be a w − v 

longest path in G. Since v is a cut vertex, P followed by Q produces a w − e 

longest path, whose length is greater than that of P. Hence eD1(w) ≥ D(w, v) 

+ D(v, e) = D(w, v) + eD1(v) > eD1(v). Thus eD1(w) > eD1(v). So that w is not a 

vertex-to-edge detour central vertex in G, which is contradiction. Hence 

CD1(G) lies within a block of G. 
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Corollary 3.15. The vertex-to-edge detour center of a tree is isomorphic to either K1 

or K2. 

Theorem 3.16. No cut vertex in a connected graph G is a vertex-to-edge detour 

peripheral vertex of G. 

Hedetniemi [see [2]] showed that every graph is the center of some 

connected graph. Chartrand et. al [3] showed that every graph is the detour 

center of some connected graph. Also Santhakumaran [9] showed that the 

vertex set of every graph G with at least two vertices is the vertex-to-edge 

center of some connected graph. Now the following theorem shows which 

graphs are vertex-to-edge detour center of some connected graph. 

Theorem 3.17. Every graph is the vertex-to-edge detour center of some connected 

graph. 

Proof. Let G be a graph of order n and let H = G + Kn+1 be the join of G and 

Kn+1. Since eD1(v) = 2(n −1) if v  V(G) and eD1(v) = 2n−1 if v V(Kn+1), it 

follows that G is the vertex-to-edge detour center of H. 

Theorem 3.18. If G is hamiltonian graph of order n then G is vertex-to-edge detour 

self centered graph having R1 = D1 = n − 2. 

The converse of the theorem 3.18 is not true. For example, the 

Petersen graph is a non-hamiltonian vertex-to-edge detour self centered 

graph. 

Theorem 3.19. If G is a vertex-to-edge detour self-centered graph of order 3 or more 

then G is 2-connected. 

Proof. Assume, to contrary, that a vertex-to-edge detour self-centered graph 

G of order n ≥ 3 is not 2-connected. By definition G is a vertex-to-edge detour 

periphery graph, every vertex in G is a vertex-to-edge detour peripheral 

vertex. Since G is not a 2-connected graph, there exists a cut-vertex v in G, 

which is not a vertex-to-edge detour peripheral vertex of G, by Theorem 

3.16, which is a contradiction. 

Bielak and Syslo [1] showed that a non-trivial graph G is the 

periphery of some connected graph if and only if every vertex of G has 
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eccentricity 1 or no vertex of G has eccentricity 1. Chartrand et. al [3] showed 

that on connected graph G of order n ≥ 3 and radius 1 is the detour 

periphery of some connected graph if and only if G is hamiltonian.  Now the 

following theorem shows which graphs are vertex-to-edge detour periphery 

of some connected graph. 

Theorem 3.20. A connected graph G of order n ≥ 3 and radius 1 is the vertex-to-

edge detour periphery of some connected graph if and only if G is hamiltonian. 

Proof. If G is hamiltonian, then G is its own vertex-to-edge detour periphery 

(by Theorem 3.18). For the converse, assume to the contrary, that there exists 

a connected graph G of order n ≥ 3 and radius 1 that is non-hamiltonian such 

that G is the vertex-to-edge detour periphery of some connected graph H. 

Let u be a vertex in G such that e(u) = 1. Since v is a vertex-to-edge detour 

peripheral vertex of H, it follows that D(u,e) = D1(H) for some e = {xy}  

E(G). Let P be a v − e detour in H. Since v is adjacent to every vertex in G, it 

follows that P∪ {e} contains every vertex of G. However then P∪ {e}∪ {uy} 

forms a cycle C in H and every vertex of C is then vertex-to-edge detour 

peripheral vertex of H. So C is a subgraph of PD1(H). Since no vertex of 

H−V(G) is a vertex-to-edge detour peripheral vertex of H, it follows that 

V(C) = V (G) and so C is a hamiltonian cycle of G. This contradicts the fact 

that G is not hamiltonian. 
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